MAX materials and MXene materials are new two-dimensional materials that have attracted much attention recently, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in lots of fields. This is a detailed introduction to the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements around the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the main group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the three elements of the alternating composition arrangement, with hexagonal lattice structure. Due to their electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they may be popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is actually a new form of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, composed of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A means the main-group elements, and X refers to the elements of C and/or N. The MXene material is a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the superb physical properties of MAX materials make them have a variety of applications in structural materials. As an example, Ti3SiC2 is a common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be utilized in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. As an example, K4(MP4)(P4) is one from the MAX materials rich in ionic conductivity and electrochemical activity, which can be used as a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The outer lining of MXene materials can interact with more functional atoms and molecules, as well as a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually include the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials really are a new form of two-dimensional transition metal carbide or nitride materials consisting of metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the ability to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and they are commonly used in energy storage and conversion. As an example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials could also be used as catalysts in fuel cells to improve the activity and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. For example, MXene materials can be used electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For instance, MXene materials can be used as gas sensors in environmental monitoring, which can realize high sensitivity and high selectivity detection of gases. Furthermore, MXene materials may also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, with the continuous progress of science and technology as well as the improving demand for services for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will be further expanded and improved. The subsequent aspects could become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and techniques may be further explored to understand a far more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is definitely high, however, there is still room for additional optimization. In the future, the composition, structure, surface treatment along with other elements of the material may be studied and improved comprehensive to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be popular in lots of fields, but you can still find many potential application areas to get explored. Later on, they could be further expanded, such as in artificial intelligence, biomedicine, environmental protection as well as other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in many fields. With the continuous progress of science and technology as well as the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials will be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.